
 407-1

On the Use of a Quadtree Search for
Estimation and Simulation

R. M.Hassanpour and O. Leuangthong

Centre for Computational Geostatistics

Department of Civil & Environmental Engineering
University of Alberta

Reservoir flow simulation involves complex geometry and geology. The use of unstructured grids
is advantageous in resolving important features such as faults, channels and deviated wells. It
also permits static and dynamic reservoir properties to be resolved at the required fine scale
resolution near well bores and along faults, while coarser resolution is often acceptable far away
from wells. Inherent to any inference modeling approach is the ability to efficiently search for
nearby relevant data and in the case of simulation, any previously simulated values. Different
search algorithms have been successfully employed for regular grids; however, under the context
of an unstructured grid, these methods may prove to be inefficient and impractical. There is a
need to develop a robust, efficient searching method that can quickly search for nearby
information within an unstructured grid.

This paper examines the use of a quadtree search for estimation and simulation. This is initially
tested on a regular grid and its efficiency is compared against the super block search.
Interestingly, the super block search performed just as efficiently in estimation and even faster
than the quadtree search in simulation.

Introduction

Reservoir simulation is often implemented on unstructured grids to resolve the complexity of
reservoir geometry. Developing a three dimensional non-Cartesian model enables us to quantify
reservoir properties with greater precision than was previously possible. The recent reservoir
simulators must be capable of accurately representing these complexities.

Current simulation algorithms such as sequential Gaussian simulation (SGS) (Isaaks, 1990) are
unable to consider multiscale data on a regular grid, much less on an unstructured grid. The
implementation of direct sequential simulation (DSS) is proposed to solve this problem (Manchuk
et. al., 2005), however searching for nearby relevant data remains an issue.

A brute-force approach could be implemented for any type of grid; however, this type of search
means to consider every possible solution of a problem until a solution is found, or all possible
solutions have been exhausted. Generally, brute force refers to any method that does not rely on
any intelligence, but tries every possible solution to find the best answer. This method is
applicable for small number of data but becomes time-prohibitive when a large data set is
considered.

To counter the inefficiencies inherent to a brute force search strategy, numerous search
algorithms have been proposed for geostatistical estimation and simulation. The most common
strategies are implemented in the GSLIB software (Deutsch and Journel, 1998), and include the

 407-2

super block search, spiral search and the octant search. The super block search algorithm is used
to efficiently find non-gridded data. In this technique a template grid is constructed according to
the search ellipsoid and centered at the point of interest. Then all data which are located in the
template grid are found and considered for estimation/simulation. In the case where data are
located on a regular grid, the spiral search is an efficient alternative (Deutsch and Journel, 1998).
In this method the search starts at the location of estimation and follows the spiral path to find the
relevant data. The search is terminated when the maximum number of data searched or the search
radius is reached. Another common search strategy is the octant search, which is useful if there is
significant clustering of the samples. For this search, the search neighborhood is divided into
eight equal sectors. If there are too many empty adjacent octants around a block then that block
will not be estimated. Zanon (2004) discusses each of these search strategies in more detail and
examines their impact on simulation time.

Despite the fact that the conventional search methods found in common geostatistical software
works quite efficiently for a regular grid, the extension to unstructured grids poses several
challenges. Firstly, the data for an unstructured grid will consist of multiscale, irregularly shaped
support volumes, any method that is suited for finding data on a regular grid/spacing will likely
be inadequate. Secondly, a template approach presumes that the grid can be resolved into some
common pattern that is easily translated throughout the model area; however, the flexibility
permitted by an unstructured grid is inconsistent with finding any local templates that could be
applied throughout the domain.

Implementation of conventional searching algorithms commonly found in existing geostatistical
modeling methods to an unstructured grid is certainly an option. Another option is to consider
other search strategies that have been used in the computer graphics and gaming industry for their
robustness and efficiency. This paper considers one such strategy: search trees. Specifically, we
examine the use of search trees for estimation and simulation. The following section provides
some background on tree-based search methods. A small example of how a quadtree search
works is presented. This is then implemented as a subroutine for kriging and simulation and a
small comparative study is presented.

Tree-based Search Methods

Consider the number of data point distributed spatially in area A. Tree based methods index data
in a way that can be easily accessible when they are needed. The tree structure is based on the
location of data in space and the specification of a root node (or the initial tree’s root); the root
node contains all sub-nodes. Each node could be either a leaf or a parent node. Parent nodes have
one or more child nodes and all children of the same node are siblings (see Figure 1). Data points
are assigned to the leaf nodes.

 407-3

Figure 1: Schematic illustration of Tree data Structure.

Depending on the area decomposition and the way data are indexed, several tree-based data
structures are developed and used in computer science applications. Some of the most useful of
them are discussed as follows.

Quad-trees

These types of structures are used for two dimensional data spaces. In this structure the regions
are defined by squares in the plane, which are subdivided into four rectangles if any regions
contain more than a specified number of data inside them. So each internal node in the underlying
tree has four children. Figure 2 shows 10 data point in a square region. The space is divided in a
way that each region has a maximum of one data. The location of each data is tree is also shown.
Data in smaller squares are located in the lower tree’s layer. The process of point insertion and
deletion is fairly simple in quad-trees. This kind of structure is commonly used in image
processing techniques and its advantage in memory storage is highly appreciated.

Figure 2: Data indexing using Quadtree. On the left: The space is recursively divided into four
squares. On the right: The quadtree structure showing the location of data in tree.

 407-4

Octrees

In case of 3-D data, the octree data structure can be applied in order to index data. The main
concept of this method is the same as a quadtree, but regions are defined by cubes in 3
dimensions, which are subdivided into eight equal-sized cubes (like an octant) for any regions
containing more than a single point (Figure 3). So each internal node in the underlying tree has
eight children and, like quad-trees, point insertion/ deletion is simple.

k-d trees

This search algorithm is designed to use in multidimensional spaces. Regions are defined by
hyperrectangles which are subdivided into two hyperrectangles by cutting a hyperplane through
the median point, for any regions containing more than two points. So the underlying tree can be
made a binary tree; compared to the octree structure, it may have more layers or depth which
considerably affects the efficiency of searching through the tree. Although some variants were
proposed to help, such as, cutting along the longest side instead of along each axis recursively,
the octree is generally preferred.

Figure 3: Octree Data Structure. 3-D data space (left end) is divided into eight equal sized cube
and recursively repeated to have maximum one point in each cube (right end).

Compressed quadtree or Octrees

Regions are defined in the same way as in a quadtree or octree (depending on the dimensionality),
but paths are compressed so that all parent nodes that have just one non empty child are
eliminated. Figure 4 shows a quadtree structured and the resulting compressed tree. This tree
structure has all advantages of quadtree or octree but it is more memory efficient.

Figure 4: A quadtree structure (left) and the resulting compressed tree (right). (Redrawn from
Eppstein et al., 2005)

 407-5

Algorithm of Point Insertion in Quadtree

There are different types of quadtree structures which are differentiated by the type of data (point,
area or volume) and the decomposition process. Commonly, quadtrees are used for point data,
curves, surfaces and volume. The decomposition process also may be into equal parts or it may be
governed by the input. Due to this variety, the algorithms for data insertion and search would be
different. One of the most powerful and efficient algorithm for point data is discussed by Samet
(1990).

Data are inserted in the tree one by one. Three different conditions may occurred when a point is
inserted in the tree structure: (1) data falls in an empty quadrant and is assigned to the node, (2)
data falls in a quadrant which already has a point assigned to it, so the corresponding quadrant is
recursively decomposed until each sub-quadrant contains a maximum of one point, or (3) data
falls in a quadrant which contains a root and in this case the point is assigned to the relevant
quadrant of that root. The algorithm is summarized in Figure 5.

Figure 5: Three cases which may occurred when a new point inserted in a tree. Point inserted in
an empty quadrant (left), a quadrant contains data (center) and a quadrant contain a root (right).

Searching within Quadtrees

In geostatistical estimation and simulation, data in a local neighborhood must be identified.
Quadtree structure can be used as an option. The main idea of search in quadtree is to reduce the
number of quadrants that should be considered for the search. In order to do this, the coordinate
of the initial tree’s root is compared with the desired point of estimation to find the quadrants of
the tree that should be searched by using the template figure (See Figure 6). After all quadrants are
found then a check is performed to see if data within those quadrants lie within the search
neighbourhood. The following example explains detail of point insertion and search algorithm.

Let’s consider six points with the coordinates and their porosity value given in Table 1 . First,
let’s consider insertion of two first points into tree (one by one). According to the input data, the

 407-6

boundaries of data space and also initial tree’s root are defined (X=6.5, Y=5.75). Comparing the
first point coordinate to the tree’s root, point one is inserted in SW quadrant. The same
comparison is performed for point 2 and shows that point 2 also resides in SW quadrant with
respect to the tree’s root. Since the SW quadrant is already consists of point 1, this quadrant is
divided into four sub-quadrants. A new root (parent node) is defined (X=3.5, Y=2.75) and both
points 1 and 2 are compared with this new root to define into which quadrant they may be
assigned (point 1 in SW and point 2 in NW). Other data points are entered into tree in the same
way (Figure 7). It is clear that the shape of the final tree is independent of the order in which data
points are inserted into it.

X Y Porosity
1 1.5 6.98

1.5 4.2 7.61
8 10 7.42
6 3.1 11.83

12 7.35 8.49
5 10 13.38

Table 1: Coordinates and value of 6 data used in example.

Figure 6: Template figure showing a circular search space and regions in which a root of a
quadtree may reside (Redrawn from Samet, 1990). For example if all nodes within the radius r of
point A are desired and the tree’s root, say R, is in region 7, then the search can be restricted to the
NW and NE quadrants of R.

 407-7

Figure 7: 6 data points are inserted in a tree.

Now let’s consider that we want to search for all data points that fall in within a circle centered at
(6.5,8.5) with radius of 2.5 (See Figure 8). According to the search circle and the template figure,
the initial tree’s root reside in region 7 and the search area is restricted to the NW and NE
quadrant of this root. Thus there is no need to search the data points of SW and SE quadrants.
Indeed, the NW quadrant is also a parent node and by referring to the template figure, the NE and
SE child of this node should not be considered for search.

Figure 8: Searching around point (6.5,8.5) with radius of 2.5.

 407-8

Implementation

The subroutine srchqdt was developed to implement the quadtree search. This subroutine
returns the number of close data to the estimation point as well as the index of those data in
ascending order. This routine can be easily called in any estimation and simulation code for a
circular search area.

In order to compare the performance and efficiency of srchqdt with the available search
algorithms in GSLIB software, a data set with 310 data points is considered (Figure 9).

Figure 9. Location map and histogram of 310 samples used in example.

The kb2d and sgsim codes are modified to use the quadtree search. Estimation (simple kriging)
and simulation is performed on the sample data with a quadtree search and the super block
search. Figure 10 shows the results of the search algorithm in estimation, and we see clearly that
there is no impact on the estimation results due to the search strategy. Figure 11 shows the results
of applying the quadtree search and the super block search in simulation. Minor differences are
observed between the super block search and quadtree search in simulation which is not
significant.

The primary motivation for this study is to examine the computational efficiency of a different
search algorithm. As such, the execution time for this example is recorded and tabulated in Table
2. Surprisingly, results show that the super block search is more efficient than quadtree search in
terms of execution time.

 Code Grids Execution Time (s)

kb2d-qt 300x500 147

E
st

im
at

io
n

kb2d 300x500 48.6

sgsim-qt 300x500 48.1

Si
m

ul
at

io
n

sgsim 300x500 14.37

Table 2. Comparison of execution time for quadtree search in estimation and simulation.

 407-9

Conclusion

Compared to the conventional super block search in many of the GSLIB estimation and
simulation algorithms, the quadtree search does not show any improvement in terms of execution
time for estimation or simulation. The quadtree algorithm is inherently efficient, and the
inefficiency appears in this paper may be due to the coding. Improving the srchqdt code may
considerably affect the execution time.

References

Eppstein D., Goodrich M., Sun J. , June 2005,”The Skip Quadtree: A Simple Dynamic Data
Structure for Multidimensional Data”, the twenty-first ACM symposium on Computational
Geometry.

Manchuk, J., Leuangthong, O., and Deutsch, C.V. 2004, “Direct Geostatistical Simulation on
Unstructured Grids”, in O. Leuangthong and C. Deutsch, eds., Geostatistics Banff 2004, vol.
1, Springer Science+Business Media, p. 85-94.

Pyrcz M. J., Deutsch C. V.,” Building Blocks for Direct Sequential Simulation on Unstructured
Grids”, Centre for Computational Geostatistics Report: 4, University of Alberta, 2002.

Samet H., 1990, The Design and Analysis of Spatial Data Structures, Addison Wesley, Reading,
MA, 493 p.

 407-10

Figure 10. kriging results coming out of kriging with conventional search (Top), kriging using
quadtree search (middle) and difference map (bottom).

 407-11

Figure 11: Simulation results coming out of SGSIM with Super block search (Top), SGSIM
using quadtree search (middle) and difference map (bottom).

